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(57) ABSTRACT

Apparatus and methods for plasticity in a spiking neuron
network. In one implementation, a plasticity mechanism is
configured based on a similarity measure between neuron
post-synaptic and pre-synaptic activity. The similarity mea-
sure may comprise a cross-correlogram between the output
spike train and input spike train, determined over a plasticity
window. Several correlograms, corresponding to individual
input connections delivering pre-synaptic input, may be com-
bined. The combination may comprise for example a
weighted average. The averaged correlograms may be used to
construct the long term potentiation component of the plas-
ticity. The long term depression component of the plasticity
may comprise e.g., amonotonic function based on a statistical
parameter associated with the adaptively determined long
term potentiation component.
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ADAPTIVE PLASTICITY APPARATUS AND
METHODS FOR SPIKING NEURON
NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to co-owned U.S. patent appli-
cation Ser. No. 13/152,119, entitled “SENSORY INPUT
PROCESSING APPARATUS AND METHODS”, filed on
Jun. 2, 2011 and patented as U.S. Pat. No. 8,942,466 on Jan.
27,2015, co-owned and co-pending U.S. patent application
Ser. No. 13/465,924, entitled “SPIKING NEURAL NET-
WORK FEEDBACK APPARATUS AND METHODS”, filed
May 7, 2012, co-owned and co-pending U.S. patent applica-
tion Ser. No. 13/465,903 entitled “SENSORY INPUT PRO-
CESSING APPARATUS IN A SPIKING NEURAL NET-
WORK?, filed May 7, 2012, a co-owned and co-pending U.S.
patent application Ser. No. 13/465,918, entitled “SPIKING
NEURAL NETWORK OBJECT RECOGNITION APPA-
RATUS AND METHODS”, filed May 7, 2012, co-owned
U.S. patent application Ser. No. 13/488,106, entitled “SPIK-
ING NEURON NETWORK APPARATUS AND METH-
ODS”, filed Jun. 4, 2012, co-owned and co-pending U.S.
patent application Ser. No. 13/488,144, entitled “SPIKING
NEURON NETWORK APPARATUS AND METHODS”,
filed Jun. 4, 2012, co-owned, co-pending U.S. patent appli-
cation Ser. No. 13/541,531, entitled “CONDITIONAL
PLASTICITY SPIKING NEURON NETWORK APPARA-
TUS AND METHODS?”, filed Jul. 3, 2012, co-owned, co-
pending U.S. patent application Ser. No. 13/660,945, entitled
“MODULATED PLASTICITY APPARATUS AND METH-
ODS FOR SPIKING NEURON NETWORKS?”, filed on Oct.
25,2012, co-owned U.S. patent application Ser. No. 13/660,
967, entitled “APPARATUS AND METHODS FOR ACTIV-
ITY-BASED PLASTICITY IN A SPIKING NEURON NET-
WORK?, filed on Oct. 25, 2012 and patented as U.S patent
No. 8,972,315 on Mar. 3, 2015, and co-owned, co-pending
U.S. patent application Ser. No. 13/660,982, entitled “SPIK-
ING NEURON SENSORY PROCESSING APPARATUS
AND METHODS FOR SALIENCY DETECTION”, filed on
Oct. 25, 2012, each of the foregoing incorporated herein by
reference in its entirety.

COPYRIGHT

A portion of the disclosure of this patent document con-
tains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND

1. Technological Field

The present disclosure relates generally to artificial neural
networks, and more particularly in one exemplary aspect to
computer apparatus and methods for plasticity implementa-
tion in a pulse-code neural network.

2. Description of Related Art

Artificial spiking neural networks are frequently used to
gain an understanding of biological neural networks, and for
solving artificial intelligence problems. These networks typi-
cally employ a pulse-coded mechanism, which encodes infor-
mation using timing of the pulses. Such pulses (also referred
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to as “spikes” or ‘impulses’) are short-lasting (typically on the
order of 1-2 ms) discrete temporal events. Several exemplary
embodiments of such encoding are described in commonly
owned and co-pending U.S. patent application Ser. No.
13/152,084 entitled “APPARATUS AND METHODS FOR
PULSE-CODE INVARIANT OBJECT RECOGNITION”,
filed Jun. 2, 2011, and co-owned U.S. patent application Ser.
No. 13/152,119,filed Jun. 2, 2011, entitled “SENSORY
INPUT PROCESSING APPARATUS AND METHODS”,
and patented as U.S. Pat. No. 8,942,466 on Jan. 27,2015, each
incorporated herein by reference in its entirety.

Typically, artificial spiking neural networks, such as the
exemplary network described in owned U.S. patent applica-
tion Ser. No. 13/541,531, entitled “CONDITIONAL PLAS-
TICITY SPIKING NEURON NETWORK APPARATUS
AND METHODS”, may comprise a plurality of units (or
nodes), which correspond to neurons in a biological neural
network. Any given unit may be connected to many other
units via connections, also referred to as communications
channels, and/or synaptic connections. The units providing
inputs to any given unit are commonly referred to as the
pre-synaptic units, while the unit receiving the inputs is
referred to as the post-synaptic unit.

Each of the unit-to-unit connections may be assigned, inter
alia, a connection efficacy, which in general may refer to a
magnitude and/or probability of input spike influence on unit
output response (i.e., output spike generation/firing). The
efficacy may comprise, for example a parameter—synaptic
weight—by which one or more state variables of post-synap-
tic unit are changed. During operation of a pulse-code net-
work, synaptic weights may be dynamically adjusted using
what is referred to as the spike-timing dependent plasticity
(STDP) in order to implement, among other things, network
learning. In some implementations, larger weights may be
associated with a greater effect a synapse has on the activity of
the post-synaptic neuron.

In some existing plasticity implementations, connections
that deliver inputs (to a given unit) prior to generation of
post-synaptic response may be potentiated, while connec-
tions that deliver inputs after the generation of the post-syn-
aptic response may be depressed. The choice of plasticity
functional dependence may determine network behavior.
Accordingly, various implementations plasticity mechanisms
exist including, for example, the use of target connection
efficiency (that may be defined as a ratio of a number of input
(pre-synaptic) spikes N, delivered to a neuron via the con-
nection that are followed by neuron response (e.g., post-
synaptic spike) generation, to the total number of input spikes
N,,, delivered to the neuron via the connection. However,
existing plasticity implementations do not always provide for
network behavior, particularly when input characteristics
change.

Consequently there is a salient need for improved adaptive
plasticity mechanisms to enable a spiking neuron network
capable of operating in a wide variety of input and network
dynamic regimes.

SUMMARY OF THE DISCLOSURE

The present disclosure satisfies the foregoing needs by
providing, inter alia, apparatus and methods for implement-
ing adaptive plasticity in spiking neuron networks that may be
dynamically adjusted in accordance with the connection
activity thereby enhancing the learning performance of a
neural network.

In a first aspect of the disclosure, a method of updating an
efficacy of a connection configured to communicate an input
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to an artificial spiking neuron is disclosed. In one embodi-
ment, the method includes: determining a similarity measure
between the input and a neuron output; identifying one or
more components associated with one or more lag values,
respectively, from the similarity measure; and updating the
efficacy based on the one or more components.

In a second aspect, computerized spiking neuron apparatus
is disclosed. In one embodiment, the apparatus comprise a
storage medium, the storage medium comprising a plurality
of executable instructions configured to, when executed,
adjust an efficacy of an interface of the neuron by at least:
adjustment of neuron excitability based on one or more pre-
synaptic inputs; storage of one or more pre-synaptic times
associated with one or more pre-synaptic inputs; and when
the excitability is above a threshold: generation of post-syn-
aptic output; determination of a similarity measure between
the neuron output signal, comprising the response, and the
one or more pre-synaptic inputs; determination of a long term
potentiation component (L'TP) of the adaptive plasticity based
on the similarity measure; and determination of a long term
depression component of the adaptive plasticity based on a
parameter associated with the LTP

In one variant, the response is generated by the neuron
based on the one or more pre-synaptic inputs.

In another aspect, a computerized spiking neuron network
system is disclosed. In one embodiment, the system is con-
figured to implement an adaptive plasticity in the network,
and includes: one or more processors configured to execute
computer program modules, the execution of the computer
program modules configured to cause the one or more pro-
cessors, based on a response by a neuron of the network, to
adjust one or more connections capable of providing input to
the neuron by atleast: determination of one or more similarity
measures between the neuron output signal, comprising the
response, and one or more input signals provided by the one
or more connections, respectively; determination of a long
term potentiation component (LTP) of the adaptive plasticity
based on an average of the one or more similarity measures;
and determination of a long term depression component of
the adaptive plasticity based on a parameter associated with
the LTP.

In another aspect, computer readable apparatus is dis-
closed. In one embodiment, the apparatus includes at least
one computer program configured to, when executed, imple-
ment an adaptive plasticity in a neural network.

Further features of the present disclosure, its nature and
various advantages will be more apparent from the accompa-
nying drawings and the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram depicting an artificial spiking
neural network according to one implementation.

FIG. 2 is a graphical illustration depicting histogram deter-
mination based on post-synaptic and pre-synaptic activity of
a unit of the spiking network of FIG. 1, according to one
implementation.

FIG. 3 is a plot depicting adaptively constructed spike-time
dependent plasticity (STDP) for use in the spiking network of
FIG. 1, according to one implementation.

FIG. 4 is a logical flow diagram illustrating determination
of an adaptive plasticity mechanism, in accordance with one
implementation.

FIG. 5 is a logical flow diagram illustrating a method of
determining adaptive plasticity for a spiking neuron compris-
ing multiple input connections, in accordance with one imple-
mentation.
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FIG. 6 is a logical flow diagram illustrating a method of
connection plasticity update based on the adaptive STDP
rule, in accordance with one implementation.

FIG. 7 is a block diagram illustrating performance of a
sensory processing apparatus comprising adaptive plasticity
mechanism in accordance with one implementation.

FIG. 8 is a block diagram illustrating a sensory processing
apparatus comprising adaptive plasticity mechanism in
accordance with one implementation.

FIG. 9 is a block diagram illustrating a computerized sys-
tem useful for, inter alia, providing an adaptive plasticity
mechanism in a spiking network, in accordance with one
implementation.

FIG. 10 is a block diagram illustrating a neuromorphic
computerized system useful with, inter alia, adaptive plastic-
ity mechanism in a spiking network, in accordance with one
implementation.

FIG. 11A is a block diagram illustrating a hierarchical
neuromorphic computerized system architecture useful with,
inter alia, adaptive plasticity mechanism in a spiking network,
in accordance with one implementation.

FIG. 11B is a block diagram illustrating a cell-type neuro-
morphic computerized system architecture useful with, inter
alia, adaptive plasticity mechanism in a spiking network, in
accordance with one implementation.

All Figures disclosed herein are © Copyright 2012 Brain
Corporation. All rights reserved.

DETAILED DESCRIPTION

Embodiments and implementations of the various aspects
of'the present innovation will now be described in detail with
reference to the drawings, which are provided as illustrative
examples so as to enable those skilled in the art to practice the
disclosure. Notably, the figures and examples below are not
meant to limit the scope of the present disclosure to a single
embodiment or implementation, but other embodiments and
implementations are possible by way of interchange of or
combination with some or all of the described or illustrated
elements. Wherever convenient, the same reference numbers
will be used throughout the drawings to refer to same or like
parts.

Where certain elements of these embodiments or imple-
mentations can be partially or fully implemented using
known components, only those portions of such known com-
ponents that are necessary for an understanding of the present
disclosure will be described, and detailed descriptions of
other portions of such known components will be omitted so
as not to obscure the innovation.

In the present specification, an embodiment or implemen-
tations showing a singular component should not be consid-
ered limiting; rather, the invention is intended to encompass
other embodiments or implementations including a plurality
of the same component, and vice-versa, unless explicitly
stated otherwise herein.

Further, the present invention encompasses present and
future known equivalents to the components referred to
herein by way of illustration.

Asused herein, the term “bus” is meant generally to denote
all types of interconnection or communication architecture
that is used to access the synaptic and neuron memory. The
“bus” could be optical, wireless, infrared or another type of
communication medium. The exact topology of the bus could
be for example standard “bus”, hierarchical bus, network-on-
chip, address-event-representation (AER) connection, or
other type of communication topology used for accessing,
e.g., different memories in pulse-based system.
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As used herein, the terms “computer”, “computing
device”, and “computerized device”, include, but are not lim-
ited to, personal computers (PCs) and minicomputers,
whether desktop, laptop, or otherwise, mainframe computers,
workstations, servers, personal digital assistants (PDAs),
handheld computers, embedded computers, programmable
logic device, personal communicators, tablet computers, por-
table navigation aids, J2ME equipped devices, cellular tele-
phones, smart phones, personal integrated communication or
entertainment devices, or literally any other device capable of
executing a set of instructions and processing an incoming
data signal.

As used herein, the term “computer program” or “soft-
ware” is meant to include any sequence or human or machine
cognizable steps which perform a function. Such program
may be rendered in virtually any programming language or
environment including, for example, C/C++, C#, Fortran,
COBOL, MATLAB™, PASCAL, Python, assembly lan-
guage, markup languages (e.g., HTML, SGML, XML,
VoXML), and the like, as well as object-oriented environ-
ments such as the Common Object Request Broker Architec-
ture (CORBA), Java™ (including J2ME, Java Beans, etc.),
Binary Runtime Environment (e.g., BREW), and the like.

As used herein, the terms “connection”, “link™, “synaptic
channel”, “transmission channel”, “delay line”, are meant
generally to denote a causal link between any two or more
entities (whether physical or logical/virtual), which enables
information exchange between the entities.

As used herein, the term “memory” includes any type of
integrated circuit or other storage device adapted for storing
digital data including, without limitation, ROM. PROM,
EEPROM, DRAM, Mobile DRAM, SDRAM, DDR/2
SDRAM, EDO/FPMS, RLDRAM, SRAM, “flash” memory
(e.g., NAND/NOR), memristor memory, and PSRAM.

As used herein, the terms “processor”, “microprocessor”
and “digital processor” are meant generally to include all
types of digital processing devices including, without limita-
tion, digital signal processors (DSPs), reduced instruction set
computers (RISC), general-purpose (CISC) processors,
microprocessors, gate arrays (e.g., field programmable gate
arrays (FPGAs)), PLDs, reconfigurable computer fabrics
(RCFs), array processors, secure microprocessors, and appli-
cation-specific integrated circuits (ASICs). Such digital pro-
cessors may be contained on a single unitary IC die, or dis-
tributed across multiple components.

As used herein, the term “network interface” refers to any
signal, data, or software interface with a component, network
or process including, without limitation, those of the FireWire
(e.g., FW400, FW800, etc.), USB (e.g., USB2), Ethernet
(e.g., 10/100, 10/100/1000 (Gigabit Ethernet), 10-Gig-E,
etc.), MoCA, Coaxsys (e.g., TVnet™), radio frequency tuner
(e.g., in-band or OOB, cable modem, etc.), Wi-Fi (802.11),
WIiMAX (802.16), PAN (e.g., 802.15), cellular (e.g., 3G,
LTE/LTE-A/TD-LTE, GSM, etc.) or IrDA families.

As used herein, the terms “pulse”, “spike”, “burst of
spikes”, and “pulse train” are meant generally to refer to,
without limitation, any type of a pulsed signal, e.g., a rapid
change in some characteristic of a signal, e.g., amplitude,
intensity, phase or frequency, from a baseline value to a higher
orlower value, followed by a rapid return to the baseline value
and may refer to any of a single spike, a burst of spikes, an
electronic pulse, a pulse in voltage, a pulse in electrical cur-
rent, a software representation of a pulse and/or burst of
pulses, a software message representing a discrete pulsed
event, and any other pulse or pulse type associated with a
discrete information transmission system or mechanism.
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As used herein, the term “receptive field” is used to
describe sets of weighted inputs from filtered input elements,
where the weights may be adjusted.

As used herein, the term “Wi-Fi” refers to, without limita-
tion, any of the variants of IEEE-Std. 802.11 or related stan-
dards including 802.11 a/b/g/n/s/v and 802.11-2012.

As used herein, the term “wireless” means any wireless
signal, data, communication, or other interface including
without limitation Wi-Fi, Bluetooth, 3G (3GPP/3GPP2),
HSDPA/HSUPA, TDMA, CDMA (e.g., IS-95A, WCDMA,
etc.), FHSS, DSSS, GSM, PAN/802.15, WiMAX (802.16),
802.20, narrowband/FDMA, OFDM, PCS/DCS, LTE/LTE-
A/TD-LTE, analog cellular, CDPD, RFID or NFC (e.g., EPC
Global Gen. 2, ISO 14443, ISO 18000-3), satellite systems,
millimeter wave or microwave systems, acoustic, and infra-
red (e.g., [rDA).

Overview

The present disclosure provides, in one salient aspect,
apparatus and methods for implementing adaptive plasticity
mechanisms configured to, inter alia, to improve learning
(faster learning or learn more useful features) in artificial
spiking neuron networks, without requiring pre-defined and/
or hard coded plasticity rules.

In one or more implementations, the adaptive plasticity
mechanism may be based on a similarity measure (e.g., a
cross-correlogram, cross-correlation, convolution, deconvo-
Iution, and/or mutual information) between neuron output
and neuron input. When the neuron generates an output (fires
a spike), the cross-correlogram may be determined based on
(1) a time record of pre-synaptic input into the neuron with a
time interval AT prior to the output; and (ii) a time record of
post-synaptic output by the neuron with the same time inter-
val. In some implementations of neurons comprising multiple
pre-synaptic connections (physical and/or logical), indi-
vidual correlograms may be constructed for individual con-
nections. An averaged (over multiple connections) correlo-
gram may be determined. In some implementations, multiple
correlogram estimates (associates with multiple post-synap-
tic responses) may be averaged to produce a time-averaged
similarity measure. The averaging may be implemented in
only time with individual synapses having their respective
correlogram. In some implementations, the averaging may be
implemented over both time and synapses so that a single
correlogram may be shared by all input synapses.

In some implementations, individual spikes may be
assigned the same amplitude (e.g., binary 1). Accordingly, the
binary correlogram may be interpreted as a histogram of
pre-synaptic spike occurrence within individual time slots
(bins) prior to the post-synaptic response.

Averaged similarity measure may be used to construct
plasticity rules for the connections of the neuron. The STDP
rule may comprise for instance a long term depression (LTD)
rule and/or a long term potentiation (LTP) rule.

The causal portion (i.e., the portion of the similarity mea-
sure for which the pre-synaptic spikes occur before the post
spikes) of the similarity measure may be used, inter alia, to
construct the LTP rule. Magnitude of plasticity adjustments
may be scaled such that the mean of the similarity measure is
a constant. In some implementations, magnitude of plasticity
adjustments may be scaled such that the maximum value of
the similarity measure is a constant.

In some implementations, The LTD portion of the STDP
rule may comprise a monotonic function (e.g., a constant,
gradually increasing and/or decreasing). Magnitude of the
LTD portion may be determined based on a statistical param-
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eter of the LTP portion. In some implementations, the statis-
tical parameter may comprise maximum, mean, and/or
median of the correlogram).

The adaptively configured STDP rules may be used to
adjust weights of neuron input connections. In some imple-
mentations, the adjustment may be performed based on the
post-synaptic response by the neuron.

The plasticity methodology describe herein may advanta-
geously improve learning of the neural network. The
improved learning may be characterized by a faster conver-
gence, convergence to more meaningful features, fewer rec-
ognition errors, requiring fewer neurons to represent a given
input. In some implementations, the activity bases plasticity
mechanism may enable learning of temporally stable patterns
(e.g., learning a component of the temporal feature without
drift).

In another aspect of the disclosure, adaptive adjustment
methodologies are used to implement processing of visual
sensory information and feature/object recognition using
spiking neuronal networks. Portions of the object recognition
apparatus can be embodied for example in a remote comput-
erized apparatus (e.g., server), comprising a computer read-
able apparatus.

Embodiments of the foregoing plasticity mechanism of the
present disclosure are useful in a variety of applications
including for instance a prosthetic device, autonomous
robotic apparatus, and other electromechanical devices
requiring visual or other sensory data processing functional-
ity.

Methods

Detailed descriptions of the various embodiments and
implementations of the apparatus and methods of the disclo-
sure are now provided. Although certain aspects of the dis-
closure can best be understood in the context of the visual and
sensory information processing using spiking neural net-
works, the disclosure is not so limited, and implementations
of the disclosure may also be used in a wide variety of other
applications, including for instance in implementing connec-
tion adaptation in pulse-code neural networks.

Implementations of the disclosure may be for example
deployed in a hardware and/or software realization of a neu-
romorphic computer system. In one such implementation, a
robotic system may include a processor embodied in an appli-
cation specific integrated circuit, which can be adapted or
configured for use in an embedded application (such as a
prosthetic device).

FIG. 1 illustrates one exemplary implementation of a spik-
ing neuronal network of the disclosure, configured to process
sensory information using adaptive plasticity mechanism.
The network 100 may comprise one or more spiking neurons,
e.g., the neuron 110 in FIG. 1), The neuron 110 may be
configured to receive feed-forward spiking input via connec-
tions 104. In some implementations, the neuron 110 may be
configured to receive feedback spiking input via the connec-
tions 124. The neuron 110 may generate output (e.g., a post-
synaptic spike) using any of applicable methodologies such
as for example those described in co-owned and co-pending
U.S. patent application Ser. No. 13/152,105 filed on Jun. 2,
2011, and entitled “APPARATUS AND METHODS FOR
TEMPORALLY PROXIMATE OBJECT RECOGNITION”,
incorporated by reference herein in its entirety. The output
spikes of the neuron 110 may be propagated via the connec-
tion 114. Post-synaptic spike generation is well-established
in the spiking network arts, and accordingly will not be
described in detail herein for brevity and clarity of presenta-
tion of the inventive aspects of the present disclosure.
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The connections 104_1, 104_2, 104_3, 124 may be char-
acterized by connection efficacy. Efficacy may refer to a
magnitude and/or probability of input spike influence on neu-
ronal response (i.e., output spike generation or firing). Effi-
cacy may comprise, for example a parameter 108 (e.g., syn-
aptic weight, delay, probability of transmission, and/or other
parameter) by which one or more state variables of the neuron
110 may be changed.

Connection efficacy may be changed in accordance with
one or more STDP rules. In some implementations, indi-
vidual connections may utilize connection-specific rules. In
one or more implementations, different classes of connec-
tions (e.g., fee-forward, lateral, and/or feedback) may utilize
type-specific common STDP rules.

In some implementations, the STDP rule may comprise an
adaptive STDP mechanism that may be determined in real
time by a network entity (e.g., the neuron 110, and/or another
entity (connection).

In one or more implementations, the adaptive plasticity
mechanism may be based on a similarity measure (e.g., a
cross-correlogram and/or mutual information) between neu-
ron output (e.g., the output 116) and the neuron input (e.g., the
input 106_1, 106_2, 1063, 126 in FIG. 1).

FIG. 2 illustrates one implementation of such an adaptive
mechanism. When the neuron generates an output (fires a
spike 116_1, and/or spike 202 in FIG. 2) at time t,,,,, the
cross-correlogram may be determined based on (i) a time
record of pre-synaptic input (e.g., the input 106_1, 106_2,
106_3,126 in FI1G. 1, and/or input 200, 210 in FIG. 2) into the
neuron with a time interval t, ~AT; and (i) a time record of
post-synaptic output (e.g., the output 116 in FIG. 1) by the
neuron with the same time interval. The time interval AT may
be selected form the range between 1 and 100 ms, preferably
40 ins. In some implementations, multiple correlogram esti-
mates (associates with multiple post-synaptic responses 202,
204) may be averaged to produce a time-averaged similarity
measure 220. In some implementations, the average histo-
gram 220 maybe computed by averaging over the last 1000
spikes across all input synapses, or may be computed by
averaging over the last 100 second time period.

In some implementations where the neuron receives mul-
tiple pre-synaptic connections (physical and/or logical, as
illustrated in FIG. 1), individual correlograms may be con-
structed for individual connections (e.g., the connections 104
in FIG. 1). An averaged (over multiple connections) correlo-
gram may be determined (not shown in FIG. 2).

In some implementations, individual spikes (e.g., the spike
groups 200, 210 in FIG. 2) may be assigned the same ampli-
tude (e.g., binary 1). Accordingly, the binary correlogram 220
may be interpreted as a histogram of pre-synaptic spike
occurrence within individual time slots (bins) prior to the
post-synaptic response. In some implementations, the time
step (bin width) 222 may be selected equal to 1 ms.

An averaged similarity measure (e.g., the correlogram 220)
may be used to construct plasticity rules for the connections
of'the neuron, as described in detail with respect to the exem-
plary implementation of FIG. 3.

The STDP rule 300 of FIG. 3 may comprise a long term
depression rule 302 and/or a long term potentiation rule 304.
For example, the pre-synaptic portion (i.e., where t,,,<t,,,)
may comprise the I'TD rule, and the post-synaptic portion
(i.e., wheret,, =t , ) may comprise the LTP rule, as shown in
FIG. 3.

The causal portion of the similarity measure (e.g., the
portion of the curve 220 of FIG. 2 where t,,,,,~t,,.<0, also
corresponding to the portion of the correlogram where pre-
synaptic spikes came before post-synaptic spikes) may be
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used to construct the LTP rule. In some implementations, the
LTP rule may be characterized by a plasticity window Tp 306
in FIG. 3. Correspondingly, values of the similarity measure
(220 in FIG. 2) that fall within the time interval 306 may be
used to determine the LTP portion of the plasticity rule. In
some implementations, the similarity measure and w(At) of
plasticity adjustments may be scaled such that the mean value
is constrained to be 1, or the maximum value may be con-
strained to be 1. The LTD portion of the STDP rule may
comprise for example a monotonic function of time (e.g., a
constant 302_1, gradually increasing and/or decreasing
302_2). The magnitude of the LTD portion may be deter-
mined based on a statistical parameter of the LTP portion. The
statistical parameter may comprise for instance mean,
median, a percentile, maximum, etc.

The LTD portion may be characterized by a time window
Td 308. In some implementations, the LTP and LTD windows
306, 308 may be configured equal to one another. In one or
more implementations, the time window AT used for deter-
mining similarity measure (e.g., the measure 220 in FIG. 2)
may be set equal to either Tp, Td. The time windows AT, Tp,
Td may also be configured different from one another, such
that the window of LTD is longer than LTP (or vice versa),
depending on the temporal structure of the pattern to be
learned.

The adaptively configured STDP rules (e.g., the rules 304,
302 in FIG. 3) may be used to adjust efficacy of neuron
connections. In some implementations, the adjustment may
be performed based on the post-synaptic response of the
neuron. In one or more implementations, the efficacy may
comprise synaptic weight.

Returning now to FIG. 2, when the neuron generates post-
synaptic response (230 in FIG. 2), the history of pre-synaptic
input may be evaluated. One or more pre-synaptic pulses (the
spikes 232, 234, 236 in FIG. 2) may be identified within the
time window AT, prior to the post-synaptic spike 230. Plas-
ticity components (e.g., the components 242, 244, 246), cor-
responding to the pre-synaptic times tp,ei of the identified
pulses 232, 234, 236, may be combined by an operator 240 to
produce weight adjustment w 248. In some implementations,
the adjustment may be performed based on an event, such as
timer expiration, buffer overflow, external (reward) indica-
tion, and/or other event types).

Referring now to FIGS. 4-6, exemplary implementations
of adaptive plasticity methods according to the disclosure are
described. In some implementations, the methods of FIGS.
4-6 may be used, for example, for operating the neurons 102
of FIG. 1. Moreover, methods of FIG. 4-6 may be imple-
mented in a connection (e.g., the connection 104, 124 of F1G.
1). The methods of FIG. 4-6 may also be implemented in
sensory processing apparatus, comprising one or more spik-
ing neuron networks as described with respect to FIG. 8,
infra, thereby advantageously aiding, inter alia improving the
speed and or quality of learning, potentially requiring fewer
neurons to represent a given input, as well as learning tem-
porally stable patterns.

FIG. 4 illustrates a method of determining adaptive plas-
ticity for a spiking neuron based on a similarity measure
between neuron input and output, in accordance with one
implementation.

At step 402 of method 400, a neuron generates an output Y.
In some implementations, the output may be generated in
accordance with a deterministic spike response model, as
described for example in co-owned U.S. patent application
Ser. No. 13/152,119, entitled “APPARATUS AND METH-
ODS FOR TEMPORALLY PROXIMATE OBIECT REC-
OGNITION?, filed on Jun. 2, 2011, and patented as U.S. Pat.

15

25

30

40

45

55

60

10

No. 8,942,466 on Jan. 27, 2015, incorporated herein by ref-
erence in its entirety. In some implementations, the spike
response process may comprise adaptive threshold adjust-
ment as described in co-owned U.S. patent application Ser.
No. 13/623,820, entitled “APPARATUS AND METHODS
FOR ENCODING OF SENSORY DATA USING ARTIFI-
CIAL SPIKING NEURONS?”, filed on Sep. 20, 2012, incor-
porated herein by reference in its entirety. In some implemen-
tations, the neuron may be operable in accordance with
stochastic process, as described in co-owned U.S. patent
application Ser. No. 13/487,499, entitled “STOCHASTIC
APPARATUS AND METHODS FOR IMPLEMENTING
GENERALIZED LEARNING RULES”, filed on Jun. 4,
2012, incorporated herein by reference in its entirety.

At step 404 of the method 400, a history of inputs into the
neuron may be accessed. In some implementations, the his-
tory may comprise one or more spikes 106_1, 106_1, 106_1
in FIG. 1. The history may comprise for example time data of
pre-synaptic spikes stored in a synaptic memory buffer as
described in U.S. patent application Ser. No. 13/239,259,
entitled “APPARATUS AND METHOD FOR PARTIAL
EVALUATION OF SYNAPTIC UPDATES BASED ON
SYSTEM EVENTS”, filed on Sep. 21, 2011, and patented as
U.S.Pat.No. 8,725,662 on May 13, 2014, incorporated supra.

At step 406, a similarity measure C(X,Y,t) between the
output (X) and the input (Y) as a function of time shift (t) may
be determined. In some implementations, the similarity mea-
sure may use correlation measured at different time shifts;
i.e., a correlogram, as described with respect to FIG. 2, supra.
The similarity measure may use for example mutual informa-
tion at different time shifts as determined as follows:

106 Y)= 37 3, pls plog| pp(g’pg) }

yeYxeX

where:

p(x.y) is the joint probability distribution function of X and
Y; and

p(x) and p(y) are the marginal probability distribution
functions of X and Y respectively.

At step 408, a plasticity rule is configured based on the
similarity measure. In some implementations, the plasticity
rule determination may comprise approach described with
respect to FIGS. 2A-3, supra.

FIG. 5 illustrates a method of determining adaptive plas-
ticity for a spiking neuron comprising multiple input connec-
tions, in accordance with one implementation.

At step 502 of the method 500, plasticity time window is
configured. In some implementations, the LTP and LTD com-
ponent may comprise the time extent T. In one or more imple-
mentations, the LTP and LTD component may comprise dif-
ferent time extents Tp, Td.

At step 504, LTD time-dependence is configured. In one or
more implementations, the LTD may comprise a constant, a
gradually increasing and/or decreasing function (e.g., the
functions 302_1, 302_2 illustrated in FIG. 3).

At step 506, an event is detected. In some implementations,
the event may comprise post-synaptic spike generation by the
neuron. The event may comprise for example an external
event (e.g., reinforcement signal), a timer event (e.g., for
cyclic updates), a buffer overflow event (e.g., indicative of a
memory buffer, storing, for example, pre-synaptic and/or
post-synaptic spike history being full or nearly full), etc.

Responsive to the event, at step 508, a correlogram C, (e.g.,
between pre-synaptic spike train x, from i connection and
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the post-synaptic spike train Y over the time window T) is
determined. In one implementation, the correlogram deter-
mination comprises:

partitioning the time window into M bins;

identifying number n,,, of pre-synaptic inputs xi associated

with individual m” bin, m=1-M; and

incrementing value of m™ bin by n,,,.

It will be appreciated by those skilled in the arts that other
similarity measures may be employed at step 508 in place
and/or along with the correlogram, such as, for example,
cross-correlation, mutual information, and/or convolution.

At step 510, a check may be performed if inputs form other
connections need to be processed. When data from additional
connections exist, the method 500 may return to step 508.

When no additional data are present, the method 500 may
proceed to step 512, where average correlogram may be
determined as a weighted average:

<C>=p._Ma,C)) (Eqn. 1)

where a, comprise the weights. The individual weights may
be set to the same value. In some implementations, the
weights may be set synapse-specific. For example, the
weights could be “0” for very weak synaptic connections, and
“1” for strong connections.

Atstep 514, the LTP portion ofthe STDP rule (e.g., the rule
304 in FIG. 3) is determined using the causal (tpre<tpost)
portion of the average correlogram <C> of Eqn. 1.

Atstep 516, the magnitude of the LTD portion of the STDP
rule (e.g., the magnitude 310 of the rule 302_1 in FIG. 3) is
determined. In some implementations, the magnitude may be
based on a statistical parameter (e.g., mean, median, percen-
tile, maximum, etc. of the LTP rule portion).

FIG. 6 illustrates a method of connection plasticity update
based on the adaptive STDP rule, in accordance with one
implementation.

At step 602, a determination may be made whether the
update is to be performed. In one or more implementations,
the update may be based on a post-synaptic spike by the
neuron. The update may be based for example on an external
event (e.g., reinforcement signal), a timer event (e.g., for
cyclic updates), a buffer overflow event (e.g., indicative of a
memory buffer, storing, for example, pre-synaptic and/or
post-synaptic spike history being full or nearly full), etc.

When the update is to be performed, the method proceeds
to step 604, where pre-synaptic update may be performed. In
some implementations, the pre-synaptic update may com-
prise the LTD rule (e.g., the rule determined at step 516 of
FIG. 5 and/or rule 302 of FIG. 3).

Atstep 606, the LTP and the L'TD rules (e.g., the rules 304,
302 of FIG. 3) may or may not be combined to produce the
post-rule. For example, in some implementations, the post-
rule may be exclusively LTP-based, or may be a combination
of'both LTP and LTD. The combination may be used in order
increase the selectivity of which temporal patterns are poten-
tiated.

Atstep 608, the post-synaptic update is performed. In some
implementations, the post-synaptic update may comprise the
combined rule.

Performance

FIG. 7 illustrates exemplary performance data associated
with a learning object recognition apparatus comprising an
adaptive plasticity mechanism. A signal processing apparatus
(e.g., the apparatus 1000 of FIG. 8 described in detail below)
may receive one or more input frames, such as the frame 700
of FIG. 7. The input frames may comprise representations of
one or more objects, such as the triangles 702 and the squares
704 of frame 700.
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The circular panels in FIG. 7 depict receptive fields of the
post-synaptic neurons of the network that may develop during
learning by the network based on the input (e.g., one or more
frames 700). The solid dots 718 in FIG. denote responses of
the one or more post-synaptic neurons.

The receptive fields 710, 714, 716 depict performance of a
network comprising plasticity mechanism of the prior art. As
shown by the receptive fields 710, 714, 716, the network is
capable of learning only a single feature (e.g., the triangle
702). Furthermore, the prior art plasticity mechanism may
cause one or more post-synaptic neurons to generate errone-
ous responses, as illustrated by the solid circle 718 in FIG. 7.

Contrast the network responses 710, 714, 716 with the
receptive 720, 722, 724, 726 corresponding to the network
comprising an exemplary adaptive plasticity mechanism of
the present disclosure. The receptive fields 720,722, 724,726
illustrate that the network (e.g., comprising one or more neu-
rons 110 of FIG. 1) is capable of learning both the triangular
objects (as shown by the neuron responses in the panels 720,
722) as well as the square objects (as shown by the neuron
responses in the panels 724, 726). In addition, the perfor-
mance of the network comprising the exemplary inventive
adaptive plasticity mechanism is characterized by a lower
number of erroneous responses.

Exemplary Apparatus

Various exemplary spiking network apparatus implement-
ing one or more of the methods set forth herein (e.g., using the
exemplary adaptive mechanisms described above) are now
described with respect to FIGS. 7-11.

One apparatus for processing of sensory information (e.g.,
visual, audio, somatosensory) using a spiking neural network
(including one or more of the conditional plasticity mecha-
nisms described herein) is shown in FIG. 8. The illustrated
processing apparatus 1000 includes an input interface con-
figured to receive an input sensory signal 1020. In some
implementations, this sensory input comprises electromag-
netic waves (e.g., visible light, IR, UV, etc.) entering an
imaging sensor array (comprising RGCs, a charge coupled
device (CCD), CMOS device, or an active-pixel sensor
(APS)). The input signal in this example is a sequence of
images (image frames) received from a CCD or CMOS cam-
era via a receiver apparatus, or downloaded from a file. Alter-
natively, the image may be a two-dimensional matrix of RGB
values refreshed at a 24 Hz frame rate. It will be appreciated
by those skilled in the art that the above image parameters and
components are merely exemplary, and many other image
representations (e.g., bitmap, CMYK, grayscale, etc.) and/or
frame rates are equally useful with the present disclosure.

The apparatus 1000 may also include an encoder 1024
configured to transform (encode) the input signal so as to
form an encoded signal 1026. In one variant, the encoded
signal comprises a plurality of pulses (also referred to as a
group of pulses) configured to model neuron behavior. The
encoded signal 1026 may be communicated from the encoder
1024 via multiple connections (also referred to as transmis-
sion channels, communication channels, or synaptic connec-
tions) 1004 to one or more neuronal nodes (also referred to as
the detectors) 1002.

In the implementation of FIG. 8, different detectors of the
same hierarchical layer are denoted by an “_n” designator,
such that e.g., the designator 1002_1 denotes the first detector
of the layer 1002. Although only two detectors (1002_1,
1002_ ») are shown in FIG. 8 for clarity, it is appreciated that
the encoder can be coupled to any number of detector nodes
that is compatible with the detection apparatus hardware and
software limitations. Furthermore, a single detector node may
be coupled to any practical number of encoders.
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In one implementation, each of the detectors 1002_1,
1002_ » contain logic (which may be implemented as a soft-
ware code, hardware logic, or a combination of thereof) con-
figured to recognize a predetermined pattern of pulses in the
encoded signal 1004, using for example any of the mecha-
nisms described in co-owned U.S. patent application Ser. No.
12/869,573, filed Aug. 26, 2010, entitled “SYSTEMS AND
METHODS FOR INVARIANT PULSE LATENCY COD-
ING”, and patent as U.S. Pat. No. 8,315,305 on Nov. 20,2012,
co-owned U.S. patent application Ser. No. 12/869,583, filed
Aug. 26, 2010, entitled “INVARIANT PULSE LATENCY
CODING SYSTEMS AND METHODS”, and patented as
U.S. Pat. No. 8,467,623 on Jun. 18, 2013, co-owned and
co-pending U.S. patent application Ser. No. 13/117,048, filed
May 26, 2011 and entitled “APPARATUS AND METHODS
FOR POLYCHRONOUS ENCODING AND MULTIPLEX-
ING IN NEURONAL PROSTHETIC DEVICES”, co-owned
and co-pending U.S. patent application Ser. No. 13/152,084,
filed Jun. 2, 2011, entitled “APPARATUS AND METHODS
FOR PULSE-CODE INVARIANT OBJECT RECOGNI-
TION”, each incorporated herein by reference in its entirety,
to produce post-synaptic detection signals transmitted over
communication channels 1008. In FIG. 8, the designators
1008_1, 1008 » denote output of the detectors 1002_1,
1002__», respectively.

In one implementation, the detection signals are delivered
to a next layer of the detectors 1012 (comprising detectors
1012/, 1012 _m, 1012 k) for recognition of complex
object features and objects, similar to the exemplary configu-
ration described in commonly owned and co-pending U.S.
patent application Ser. No. 13/152,084, filed Jun. 2, 2011,
entitled “APPARATUS AND METHODS FOR PULSE-
CODE INVARIANT OBJECT RECOGNITION”, incorpo-
rated herein by reference in its entirety. In this configuration,
each subsequent layer of detectors is configured to receive
signals from the previous detector layer, and to detect more
complex features and objects (as compared to the features
detected by the preceding detector layer). For example, a
bank of edge detectors is followed by a bank of bar detectors,
followed by a bank of corner detectors, and so on, thereby
enabling alphabet recognition by the apparatus.

Each of the detectors 1002 may output detection (post-
synaptic) signals on communication channels 1008 1,
1008__» (with appropriate latency) that may propagate with
different conduction delays to the detectors 1012. The detec-
tor cascade of the apparatus of FIG. 8 may contain any prac-
tical number of detector nodes and detector banks deter-
mined, inter alia, by the software/hardware resources of the
detection apparatus and complexity of the objects being
detected.

The sensory processing apparatus implementation illus-
trated in FIG. 8 may further comprise lateral connections
1006. In some variants, the connections 1006 are configured
to communicate post-synaptic activity indications between
neighboring neurons of the same hierarchy level, as illus-
trated by the connection 1006_1 in FIG. 8. In some variants,
the neighboring neuron may comprise neurons having over-
lapping inputs (e.g., the inputs 1004_1,1004__» in FIG. 8), so
that the neurons may compete in order to not learn the same
input features. In one or more implementations, the neighbor-
ing neurons may comprise spatially proximate neurons such
as being disposed within a certain volume/area from one
another on a 3-dimensional (3D) and or two-dimensional
(2D) space.

The apparatus 1000 may also comprise feedback connec-
tions 1014, configured to communicate context information
from detectors within one hierarchy layer to previous layers,
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as illustrated by the feedback connections 1014_1 in FIG. 8.
In some implementations, the feedback connection 1014_2 is
configured to provide feedback to the encoder 1024 thereby
facilitating sensory input encoding, as described in detail in
commonly owned and co-pending U.S. patent application
Ser. No. 13/152,084, filed Jun. 2, 2011, entitled “APPARA-
TUS AND METHODS FOR PULSE-CODE INVARIANT
OBJECT RECOGNITION™, incorporated supra.

One particular implementation of the computerized neuro-
morphic processing system, adapted for operating a comput-
erized spiking network (and implementing the exemplary
conditional plasticity methodology described supra), is illus-
trated in FIG. 9. The computerized system 1100 of FIG. 9
comprises an input interface 1110, such as for example an
image sensor, a computerized spiking retina, an audio array, a
touch-sensitive input device, etc. The input interface 1110 is
coupled to the processing block (e.g., a single or multi-pro-
cessor block) via the input communication interface 1114.
The system 1100 further comprises a random access memory
(RAM) 1108, configured to store neuronal states and connec-
tion parameters (e.g., weights 108 in FIG. 1), and to facilitate
synaptic updates. In some exemplary implementations, syn-
aptic updates are performed according to the description pro-
vided in, for example, in U.S. patent application Ser. No.
13/239,255 filed Sep. 21, 2011, entitled “APPARATUS AND
METHODS FOR SYNAPTIC UPDATE IN A PULSE-
CODED NETWORK?”, incorporated by reference supra.

In some implementations, the memory 1108 is coupled to
the processor 1102 via a direct connection (memory bus)
1116. The memory 1108 may also be coupled to the processor
1102 via a high-speed processor bus 1112).

The system 1100 may further comprise a nonvolatile stor-
age device 1106, comprising, inter alia, computer readable
instructions configured to implement various aspects of spik-
ing neuronal network operation (e.g., sensory input encoding,
connection plasticity, operation model of neurons, etc.). The
nonvolatile storage 1106 may be used for instance to store
state information of the neurons and connections when, for
example, saving/loading network state snapshot, or imple-
menting context switching (e.g., saving current network con-
figuration (comprising, inter alia, connection weights and
update rules, neuronal states and learning rules, etc.) for later
use, and loading of a previously stored network configuration.

In some implementations, the computerized apparatus
1100 is coupled to one or more external processing/storage/
input devices via an I/O interface 1120, such as a computer
1/0 bus (PCI-E), wired (e.g., Ethernet) or wireless (e.g., Wi-
Fi) network connection.

In another variant, the input/output interface comprises a
speech input (e.g., a microphone) and a speech recognition
module configured to receive and recognize user commands.

It will be appreciated by those skilled in the arts that vari-
ous processing devices may be used with computerized sys-
tem 1100, including but not limited to, a single core/multicore
CPU, DSP, FPGA, GPU, ASIC, combinations thereof, and/or
other processors. Various user input/output interfaces are
similarly applicable to implementations of the disclosure
including, for example, an LCD/LED monitor, touch-screen
input and display device, speech input device, stylus, light
pen, trackball, end the likes.

Referring now to FIG. 10, one implementation of neuro-
morphic computerized system configured to implement a
conditional plasticity mechanism in a spiking network is
described in detail. The neuromorphic processing system
1130 of FIG. 10 comprises a plurality of processing blocks
(micro-blocks) 1140, where each micro-block comprises a
computing logic core 1132 and a memory block 1134. The
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logic core 1132 is configured to implement various aspects of
neuronal node operation, such as the node model, and synap-
tic update rules (e.g., the I-STDP) and/or other tasks relevant
to network operation. The memory block is configured to
store, inter alia, neuronal state variables and connection
parameters (e.g., weights, delays, I/O mapping) of connec-
tions 1138.

The micro-blocks 1140 are interconnected with one
another using connections 1138 and routers 1136. As it is
appreciated by those skilled in the arts, the connection layout
in FIG. 10 is exemplary, and many other connection imple-
mentations (e.g., one to all, all to all, etc.) are compatible with
the disclosure.

The neuromorphic apparatus 1130 is configured to receive
input (e.g., visual input) via the interface 1142. In one or more
implementations, applicable for example to interfacing with a
computerized spiking retina or an image array, the apparatus
1130 may provide feedback information via the interface
1142 to facilitate encoding of the input signal.

The neuromorphic apparatus 1130 is configured to provide
output (e.g., an indication of recognized object or a feature, or
a motor command, e.g., to zoom/pan the image array) via the
interface 1144.

The apparatus 1130, in one or more implementations, may
interface to external fast response memory (e.g., RAM) via
high bandwidth memory interface 1148, thereby enabling
storage of intermediate network operational parameters (e.g.,
spike timing, etc.). The apparatus 1130 may also interface to
external slower memory (e.g., Flash, or magnetic (hard
drive)) via lower bandwidth memory interface 1146, in order
to facilitate program loading, operational mode changes, and
retargeting, where network node and connection information
for a current task is saved for future use and flushed, and
previously stored network configuration is loaded in its place.

FIG. 11 A illustrates implementations of a shared bus neu-
romorphic computerized system comprising micro-blocks
1140, described with respect to FIG. 10, supra, coupled to a
shared interconnect. The apparatus 1145 of FIG. 11 A utilizes
one (or more) shared bus(es) 1146 in order to interconnect
micro-blocks 1140 with one another.

FIG. 11B illustrates one implementation of cell-based neu-
romorphic computerized system architecture configured to
implement Conditional plasticity mechanism in a spiking
network. The neuromorphic system 1150 of FIG. 11B com-
prises a hierarchy of processing blocks (cells block). In some
implementations, the lowest level L1 cell 1152 of the appa-
ratus 1150 may comprise logic and memory, and may be
configured similar to the micro block 1140 of the apparatus
shown in FIG. 10. A number of cell blocks may be arranges in
a cluster and communicate with one another a local intercon-
nects 1162, 1164. Each such cluster may form a higher-level
cell, e.g., cell L2, denoted as 1154 in FIG. 11B. Similarly,
several L2 clusters may communicate with one another via a
second-level interconnect 1166 and form a super-cluster [.3,
denoted as 1156 in FIG. 11B. The super-clusters 1154 may
for example communicate via a third level interconnect 1168,
and may form a next level cluster, and so on. It will be
appreciated by those skilled in the arts that the hierarchical
structure of the apparatus 1150, comprising a given number
(e.g., four) cells per level, is merely one exemplary imple-
mentation, and other implementations may comprise more or
fewer cells per level, and/or fewer or more levels, as well as
yet other types of architectures.

Different cell levels (e.g., L1, L2, L.3) of the exemplary
apparatus 1150 of FIG. 11B may be configured to perform
functionality with various levels of complexity. In one imple-
mentation, different L1 cells may process in parallel different
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portions of the visual input (e.g., encode different frame
macro-blocks), with the [.2, .3 cells performing progres-
sively higher-level functionality (e.g., edge detection, object
detection). Different [.2, 1.3 cells may also perform different
aspects of operating for example a robot, with one or more
L.2/1.3 cells processing visual data from a camera, and other
L.2/1.3 cells operating a motor control block for implementing
lens motion when e.g., tracking an object, or performing lens
stabilization functions.

The neuromorphic apparatus 1150 may receive input (e.g.,
visual input) via the interface 1160. In one or more imple-
mentations, applicable for example to interfacing with a com-
puterized spiking retina or image array, the apparatus 1150
may provide feedback information via the interface 1160 to
facilitate encoding of the input signal.

The neuromorphic apparatus 1150 may provide output
(e.g., an indication of recognized object or a feature, or a
motor command, e.g., to zoom/pan the image array) via the
interface 1170. In some implementations, the apparatus 1150
may perform all of the /O functionality using single 1/O
block (not shown).

The apparatus 1150, in one or more implementations, may
also interface to external fast response memory (e.g., RAM)
via high bandwidth memory interface (not shown), thereby
enabling storage of intermediate network operational param-
eters (e.g., spike timing, etc.). The apparatus 1150 may also
interface to external slower memory (e.g., flash, or magnetic
(hard drive)) via lower bandwidth memory interface (not
shown), in order to facilitate program loading, operational
mode changes, and retargeting, where network node and con-
nection information for a current task is saved for future use
and flushed, and a previously stored network configuration is
loaded in its place.

Exemplary Uses and Applications of Certain Aspects of the
Disclosure

The plasticity mechanism described herein may advanta-
geously improve the quality of the feature learning (as char-
acterized by a number of false positives) and/or to increase
learning speed. The adaptive plasticity mechanism may
enable the processing apparatus to learn temporally stable
patterns.

Various aspects of the disclosure may advantageously be
applied to, inter alia, the design and operation of large spiking
neural networks configured to process streams of input
stimuli, in order to aid in detection and functional binding
related aspect of the input.

In some implementations, conditional plasticity mecha-
nisms described herein may be implemented in a spiking
neuron of a network, or in a connection of the network.

The approach of the disclosure can advantageously, among
other things, achieve faster learning and improve the quality
oflearned features and (iv) enable efficient network operation
(e.g., visual input encoding) for a wide variety of input con-
ditions. It will be appreciated that the increased network
stability and flexibility may be traded for (a) a less complex,
less costly and more robust network capable of processing the
same feature set with fewer neurons; and/or (b) a more
capable, higher performance network capable of processing
larger and more complex feature set with the same number of
neurons, when compared to the prior art solutions.

It is appreciated by those skilled in the arts that above
implementation are exemplary, and the framework of the
disclosure is equally compatible and applicable to processing
of other information, such as, for example information clas-
sification using a database, where the detection of a particular
pattern can be identified as a discrete signal similar to a spike,
and where coincident detection of other patterns influences
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detection of a particular one pattern based on a history of
previous detections in a way similar to an operation of exem-
plary spiking neural network.

Advantageously, exemplary implementations of the vari-
ous aspects of the present innovation are useful in a variety of
devices including without limitation prosthetic devices,
autonomous and robotic apparatus, and other electrome-
chanical devices requiring sensory processing functionality.
Examples of such robotic devises are manufacturing robots
(e.g., automotive), military, medical (e.g. processing of
microscopy, X-ray, ultrasonography, tomography). Examples
of autonomous vehicles include rovers, unmanned air
vehicles, underwater vehicles, smart appliances (e.g.
ROOMBA®), etc.

Implementations of the principles of the disclosure are
applicable to video data compression and processing in a
wide variety of stationary and portable devices, such as, for
example, smart phones, portable communication devices,
notebook, netbook and tablet computers, surveillance camera
systems, and practically any other computerized device con-
figured to process vision data

Implementations of the principles of the disclosure are
further applicable to a wide assortment of applications
including computer human interaction (e.g., recognition of
gestures, voice, posture, face, etc.), controlling processes
(e.g., an industrial robot, autonomous and other vehicles),
augmented reality applications, organization of information
(e.g., for indexing databases of images and image sequences),
access control (e.g., opening a door based on a gesture, open-
ing an access way based on detection of an authorized per-
son), detecting events (e.g., for visual surveillance or people
or animal counting, tracking), data input, financial transac-
tions (payment processing based on recognition ofa person or
a special payment symbol) and many others.

Advantageously, the disclosure can be used to simplify
tasks related to motion estimation, such as where an image
sequence is processed to produce an estimate of the object
position (and hence velocity) either at each points in the
image or in the 3D scene, or even of the camera that produces
the images. Examples of such tasks are: ego motion, i.e.,
determining the three-dimensional rigid motion (rotation and
translation) of the camera from an image sequence produced
by the camera; following the movements of a set of interest
points or objects (e.g., vehicles or humans) in the image
sequence and with respect to the image plane.

In another approach, portions of the object recognition
system are embodied in a remote server, comprising a com-
puter readable apparatus storing computer executable
instructions configured to perform pattern recognition in data
streams for various applications, such as scientific, geophysi-
cal exploration, surveillance, navigation, data mining (e.g.,
content-based image retrieval). Myriad other applications
exist that will be recognized by those of ordinary skill given
the present disclosure.

What is claimed:

1. Computerized spiking neuron apparatus comprising a
non-transitory computer readable storage medium, the stor-
age medium comprising a plurality of executable instructions
configured to, adjust an efficacy of an interface of the neuron,
the plurality of executable instructions are configured to.
when executed, cause the computerized spiking neuron appa-
ratus to:

adjust a neuron excitability based on one or more pre-

synaptic inputs;

store one or more pre-synaptic times associated with the

one or more pre-synaptic inputs; and

when the neuron excitability is above a threshold:
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generate a post-synaptic output;

determine a similarity measure between a neuron output
signal, comprising a response, and the one or more
pre-synaptic inputs;

determine a long term potentiation (LTP) component of
an adaptive plasticity based on the determined simi-
larity measure; and

determine a long term depression (LTD) component of
the adaptive plasticity based on a parameter associ-
ated with the LTP;

wherein the post-synaptic output comprises a response
generated by the neuron based on the one or more pre-
synaptic inputs.

2. The computerized spiking neuron apparatus of claim 1,

wherein:

the similarity measure comprises a histogram character-
ized by a plurality of time interval bins;

a bin count associated with the histogram is determined
based on individual ones of the one or more pre-synaptic
times falling within respective ones of the plurality of
time interval bins; and

a magnitude associated with the histogram is scaled
according to any of (i) a constant mean value as a func-
tion of time; or (ii) a constant maximum value as a
function of time.

3. The computerized spiking neuron apparatus of claim 1,

wherein:

the one or more pre-synaptic inputs comprise one or more
spike-trains provided to the neuron via one or more
respective connections; and

the similarity measure is determined based on one or more
correlograms, individual ones of the one or more corre-
lograms being based on a correlation between the post-
synaptic output and individual ones of the one or more
spike-trains.

4. The computerized spiking neuron apparatus of claim 3,

wherein:
the one or more correlograms comprise at least two corre-
lograms; and
the similarity measure is determined based on a weighted
average of the at least two correlograms, a combination
characterized by a plurality of weights, individual ones
of the plurality of weights being determined in accor-
dance with weights of individual ones of the one or more
connections.
5. A computerized spiking neuron network system config-
ured to implement an adaptive plasticity in the network, the
system comprising:
one or more processors configured to execute computer
program modules, the execution of the computer pro-
gram modules configured to cause the one or more pro-
cessors, based on a response by a neuron of the network,
to adjust one or more connections capable of providing
input to the neuron by at least, where the execution ofthe
computer program modules cause the one or more pro-
cessors to:
determine one or more similarity measures between a
neuron output signal, comprising a response, and one
or more input signals provided by respective ones of
the one or more connections;

determine a long term potentiation (LTP) component of
anadaptive plasticity based on an average of the deter-
mined one or more similarity measures; and

determine a long term depression (LTD) component of
the adaptive plasticity based on a parameter associ-
ated with the LTP.
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6. A method of updating an efficacy of a connection con-
figured to communicate an input to an artificial spiking neu-
ron, the method comprising:

determining a similarity measure between the input and a

neuron output,

identifying one or more components associated with one or

more lag values, respectively, from the similarity mea-
sure; and

updating the efficacy based on the identified one or more

components;

wherein:

the similarity measure is determined based on any of (i)
a cross-correlation between the input and the neuron
output; (ii) a correlogram between the input and the
neuron output; and/or (iii) mutual information
between the input and the neuron output;

the neuron output comprises one or more output spikes;

for individual ones of the one or more output spikes, the
similarity measure is determined based on a convolu-
tion of the neuron output and at least a portion of the
input, the input comprising one or more input spikes
characterized by one or more pre-synaptic times, the
at least portion corresponding to a window preceding
the individual ones of the one or more output spikes;
and

the similarity measure is characterized by the one or
more lag values based on one or more time intervals
between times of the individual ones of the one or
more output spikes and respective ones of the one or
more pre-synaptic times.

7. The method of claim 6, wherein:

a plurality of similarity measures is determined for a plu-

rality of the one or more output spikes; and

the similarity measure is determined based on an average

of'individual ones of the plurality of similarity measures.

8. The method of claim 7, wherein a number of spikes
within the plurality of the one or more output spikes is
selected within a time interval ranging between 1 and 100 ms.

9. The method of claim 7, wherein a number of spikes
within the plurality of the one or more output spikes is deter-
mined based on an averaging interval selected within the
range between 100 spikes and 100,000 spikes.

10. The method of claim 6, wherein a connection plasticity
update is based on an event selected from the group compris-
ing: (i) a timer expiration; (ii) an overflow of a buffer, the
buffer being capable of storing one or more spike times asso-
ciated with the input; and

(iii) an external trigger.

11. The method of claim 10, wherein the event comprises
the external trigger, and the external trigger is provided to the
artificial spiking neuron via a bus separate from the connec-
tion.

12. The method of claim 10, wherein a combination of the
identified one or more components comprises a weighted sum
of'individual ones of components associated with at least one
spike of the input occurring within an interval associated with
the one or more lag values.

13. The method of claim 6, wherein:

the similarity measure comprises a potentiation portion

configured to potentiate the connection, and a depres-

sion portion configured to depress the connection;

the potentiation of the connection comprises substantially

increasing the efficacy thereof; and

the depression of the connection comprises substantially

reducing the efficacy thereof.

14. The method of claim 13, wherein:

the efficacy is characterized by a connection weight;
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the potentiation of the connection is characterized by a first
time-dependent function having a first time window
associated therewith; and

the potentiation of the connection comprises substantially

increasing the connection weight, the increase of the
connection weight being based at least on an integral of
the first time-dependent function over the first time win-
dow, the first time window being a positive value.

15. The method of claim 14, wherein:

the depression of the connection is characterized by a sec-

ond time-dependent function having a second time win-
dow associated therewith; and

the depression of the connection comprises substantially

decreasing the connection weight, the decrease of the
connection weight being based at least on an integral of
the second time-dependent function over the second
time window, the second time window being a negative
value.

16. The method of claim 14, wherein:

the input is configured to convey information associated

with an image element; and

the positive value is configured to increase the connection

weight, causing an increase of a probability of generat-
ing the neuron output based on the artificial spiking
neuron identifying the image element.

17. The method of claim 15, wherein at least one of the first
and second time windows are configured to be between 5 ms
and 50 ms inclusive.

18. The method of claim 13, wherein:

the efficacy is characterized by a probability of transmis-

sion;

the potentiation of the connection is characterized by a first

time-dependent function having a first time window
associated therewith; and

the potentiation of the connection comprises substantially

increasing the probability of transmission, the increase
of the probability of transmission being based at least on
an integral of the first time-dependent function over the
first time window, the first time window being a positive
value.

19. The method of claim 6, wherein:

the identified one or more components comprise at least

two components; and the updating the efficacy is further
based on a combination of the at least two components.

20. The method of claim 7, wherein a number of spikes
within the plurality of the one or more output spikes is deter-
mined based on an averaging interval selected within the
range between 10 seconds and 10,000 seconds.

21. A method of updating an efficacy of a connection
configured to communicate an input to an artificial spiking
neuron, the method comprising:

determining a similarity measure between the input and a

neuron output,

identifying one or more components associated with one or

more lag values, respectively, from the similarity mea-
sure; and

updating the efficacy based on the identified one or more

components;

wherein:

the similarity measure comprises a potentiation portion
configured to potentiate the connection, and a depres-
sion portion configured to depress the connection;

the potentiation of the connection comprises substan-
tially increasing the efficacy thereof;

the depression of the connection comprises substantially
reducing the efficacy thereof;

the efficacy is characterized by a connection weight;
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the potentiation of the connection is characterized by a
first time-dependent function having a first time win-
dow associated therewith; and

the potentiation of the connection comprises substan-
tially increasing the connection weight, the increase
of the connection weight being based at least on an
integral of the first time-dependent function over the
first time window, the first time window being a posi-
tive value.

22. The method of claim 21, wherein:

the depression of the connection is characterized by a sec-

ond time-dependent function having a second time win-

dow associated therewith; and

the depression of the connection comprises substantially

decreasing the connection weight, the decrease of the

connection weight based on an integral of the second
time-dependent function over the second time window,
the second time window being a negative value.

23. A method of updating an efficacy of a connection
configured to communicate an input to an artificial spiking
neuron, the method comprising:

determining a similarity measure between the input and a

neuron output,

identifying one or more components associated with one or

more lag values, respectively, from the similarity mea-

sure; and
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updating the efficacy based on the identified one or more
components;
wherein:

the similarity measure comprises a potentiation portion
configured to potentiate the connection, and a depres-
sion portion configured to depress the connection;

the potentiation of the connection comprises substan-
tially increasing the efficacy thereof;

the depression of the connection comprises substantially
reducing the efficacy thereof;

the efficacy is characterized by a probability of trans-
mission;

the potentiation of the connection is characterized by a
first time-dependent function having a first time win-
dow associated therewith; and

the potentiation of the connection comprises substan-
tially increasing the probability of transmission, the
increase of the probability of transmission being
based at least on an integral of the first time-dependent
function over the first time window, the first time
window being a positive value.

24. The method of claim 23, wherein the first time window
is configured between 5 ms and 50 ms inclusive.
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